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Abstract
A systematic analysis of the electrostatic effects on the effective masses of
holes in InyGa1−yAs1−x Nx /GaAs quantum-well structures was performed. A
10-band k · p Hamiltonian matrix was used in the calculations and solved self-
consistently with the Poisson equation. Numerical results have been presented
for a large range of material and structural parameters. Our results show
that significant variation in the effective masses is possible by adjusting the
relevant parameters and that the effects due to self-consistency are small for
most subbands.

1. Introduction

Semiconductor lasers based on quantum wells [1] have found important applications in fibre-
optics communication systems, in biophotonics, in optical sensing, and in several other areas.
Their design and fabrication is a costly and time-consuming process. A significant role in the
design and simulation process is played by the reliable knowledge of fundamental parameters.
One such parameter is the effective mass of holes. For the In1−x Gax As/InGaAsP material
system we have carried out a systematic numerical analysis of that parameter for a large range
of material parameters and quantum-well widths [2].

In recent years significant progress in the research on a new class of material based on
nitride semiconductors [3] had been advanced. It has been found that replacing a small amount
of the group V element by nitrogen in a III–V material system reduces the energy gap. This
reduction significantly changes the band structure and offers new possibilities of improving
the optoelectronic properties of devices based on those materials.

In the present paper we report on the numerical work aimed at determining effective masses
of holes in In1−x Gax As1−yNy which were determined for a wide range of N compositions and
well widths. We have also performed an analysis of the effects of self-consistency, which
consists in a self-consistent solution of the matrix Schrödinger equation and the Poisson
equation.

In section 2 we outline our formalism and in section 3 we present and discuss our results.
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2. Formalism

We based our approach on the method presented by Tomić et al [4], where the effect of adding
N to the structure is modelled perturbatively because the In1−x Gax As1−yNy layers have small
values of y. An 8×8 Luttinger–Kohn (LK) method (coupled model of conduction,heavy, light,
and split-off hole bands) is used with the In1−x Gax As1−yNy layers replaced by In1−x GaxAs
(known as the host structure). When a small amount of N is introduced, the 8 ×8 Hamiltonian
is expanded to a 10 × 10 Hamiltonian to account for coupling to the ‘nitrogen band’ (given
by the first and sixth rows and columns in the Hamiltonian below). Additionally some of the
terms from the 8×8 contribution are modified due to the inclusion of N. The resulting 10 ×10
Hamiltonian is

H =




EN VNc 0 0 0 0 0 0 0 0
EC −√

3T+

√
2U −U 0 0 0 −T− −√

2T−
EHH

√
2S −S 0 0 0 −R −√

2R
ELH Q 0 T ∗

+ R 0
√

3S
ESO 0

√
2T ∗

+

√
2R −√

3S 0
EN VNc 0 0 0

EC −√
3T−

√
2U −U

EHH

√
2S∗ −S∗

ELH Q
ESO




(1)

where the subscripts N, C, HH, LH, and SO stand for nitrogen, conduction, heavy-hole, light-
hole, and split-off bands, respectively. We do not show the lower triangle as this matrix is
Hermitian. The diagonal terms of the 8 × 8 component of this Hamiltonian are [1, 4]

EC = EC0 +
h̄2

2m0
sc(k

2
‖ + k2

z ) − (α − κ)y

EHH = EHH0 − h̄2

2m0

(
(γ1 + γ2)k

2
‖ + (γ1 − 2γ2)k

2
z

)
+ κy

ELH = ELH0 − h̄2

2m0

(
(γ1 − γ2)k

2
‖ + (γ1 + 2γ2)k

2
z

)
+ κy

ESO = ESO0 − h̄2

2m0
γ1(k

2
‖ + k2

z ) + κy.

Here the first terms on the RHS of these equations represent the band-edge energies of the
host system, which are found using a band-offset model that incorporates strain [1, 4]. The
last terms on the RHS of these equations represent the modification due to the N band; y is
the fraction of N in the structure, α and κ are parameters which are chosen to be 1.75 and 3.5,
respectively [4]. The term sc = 1/m∗

c − (EP/3)[2/Eg +1/(Eg +�SO) is used in place of 1/m∗
c

and the Luttinger coefficients are replaced by γ1 → γ1 − EP/(3Eh
g), γ2,3 → γ2,3 − EP/(6Eh

g)

in the 8 × 8 model (EP and Eh
g are the optical matrix parameter and bandgap of the host

material, respectively). The other 8 × 8 terms are standard [1]:

T± = 1√
6

P(kx ± iky)

U = 1√
3

Pkz

S =
√

3

2

h̄2

m0
γ3kz(kx − iky)
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R =
√

3
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with P being the Kane matrix element for the conduction band and the last term in the expression
for Q being the shear strain component [1, 4]. The N band components of the Hamiltonian
are

EN = EN0 + δEhy
N − (γ − κ)y (2)

where EN0 is the band-edge of the N band, including strain (which is just the hydrostatic
component). Table III of Choulis et al [5] gives material data for the InN and GaN systems.
The difference between the unstrained conduction and N energy bands of 0.485 eV has been
taken from Tomić et al [4]. VNc is the only N band coupling term. It describes the interaction
between the N and C bands and is given by

VNc = −β
√

y. (3)

Values for γ and β are 3.5 and 1.675, respectively [4].
The effective masses were found by a least-squares fitting of a parabolic energy dispersion

curve to the actual dispersion curve calculated from the 10 × 10 method. We took the k = 0
energies found from the 10 × 10 model as the k = 0 energies of a parabolic model

En,parab(k) = En,10×10(0) +
h̄2

2m∗
n

k2 (4)

where n denotes the nth hole band. The fitting parameter is then the band’s effective mass m∗
n .

The self-consistent method is similar to the one which we used before [6], which consists
in a self-consistent solution of the Poisson’s equation with the matrix Schrödinger equation
described by Hamiltonian (1). The Poisson equation is

d

dz

[
ε(z)

d

dz
φ(z)

]
= −e [ρHH(z) + ρLH(z) − ρC(z)] (5)

where e is the fundamental charge, ε(z) is the position-dependent permittivity, and
ρC(z), ρHH(z) and ρLH(z) are the position-dependent electron and hole band density
distributions, respectively. The function φ(z) is the electrostatic potential. The density
distributions are [6]

ρα(z) = kBT

π h̄2

{∑
n

m∗
α|Fα

n (z)|2 ln

[
1 + exp

(
E f

α − Eα
n

kBT

)]}
. (6)

The symbol α represents the conduction (C), heavy-hole (HH) and light-hole (LH) bands and
n is an index over the subbands. E f

c is the conduction band Fermi level and E f
HH = E f

LH
is the valence band Fermi level. Their values are determined by the standard methods [1].
The symbol kB is Boltzmann’s constant, T is temperature, m∗

α is the average effective mass
for the particular band which is approximated as the effective mass in the well since most of
the carriers are confined there. Fα

n (z) and Eα
n are the respective envelope eigenfunctions and

eigenvalues of the various subbands in the parabolic approximation at the band-edge.

3. Results and discussion

Our analysis was performed for undoped In0.36Ga0.64As1−yNy /GaAs systems similar to the one
studied by Tomić et al [4]. The nitrogen composition (y) changes in the range 0.00 � y � 0.05.
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Figure 1. Effective masses of the first band (HH1) versus
nitrogen composition in In0.36Ga0.64As1−yNy for three
well widths with and without self-consistency effects.

Figure 2. Effective masses of the second band (HH2)
versus nitrogen composition in In0.36Ga0.64As1−yNy for
three well widths with and without self-consistency
effects.

The values of well widths considered were 5, 10 and 15 nm. Physical parameters were taken
from table III of [5] and we used model-solid theory to calculate band-offsets [1]. The well is
strained by the lattice mismatch between it and the GaAs cladding and substrate. The material
in the well is designed to operate in the 1.3 µm range when the nitrogen is added. We use
symmetric boundary conditions [1] and present results for the [100] growth direction.

The results for hole bands are presented in figures 1–5. The calculations were performed
with and without electrostatic self-consistency assuming an average carrier density of 10 ×
1018 cm−3 in the well. We first discuss the characteristics of the calculations not incorporating
self-consistency as the self-consistent results are qualitatively the same.

The effective mass results are shown in figures 1–4. The bands are ordered as HH1 (first
heavy-hole), HH2 (second heavy-hole), LH1 (first light-hole) and HH3 (third heavy-hole) as
expected for a system under biaxial compression. All figures show a significant difference in
the effective masses depending on the well width because the band structure is highly dependent
on this quantity. We observe that for the first heavy-hole band the variation of effective mass
is less than ten per cent over the nitrogen composition range. Polimeni et al [7] mention
that band’s effective mass will have a small variation against nitrogen composition. Also, our
values are close to their estimated values (figure 3 [7]).

Of the three well widths chosen, the 5 nm width is the most affected by the nitrogen
composition. In the second and fourth band we see that the effective mass varies significantly
in certain regions, going from positive to negative. Consider, for example, figure 2 for the
5 nm well width around 4% nitrogen composition. The band curvature changes from positive
to zero to negative. Since the effective mass is proportional to the inverse of band curvature,
the relatively small curvature change causes the large changes observed in the effective mass.
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Figure 3. Effective masses of the third band (LH1) versus
nitrogen composition in In0.36Ga0.64As1−yNy for three
well widths with and without self-consistency effects.

Figure 4. Effective masses of the fourth band (HH3)
versus nitrogen composition in In0.36Ga0.64As1−yNy for
three well widths with and without self-consistency
effects.

In figure 5, for the 5 nm well width at 3% nitrogen composition, we show the band
dispersions using the 10 × 10 LK calculations and using a parabolic model utilizing the
calculated band-edge effective mass values. We observe that the effective mass dispersions
vary significantly from the 10 × 10 dispersions away from the band-edge as is expected (else
a LK approximation would not be necessary). This figure also shows that, in this case, the
fourth band has a negative curvature near the band-edge.

We have chosen a rather large carrier concentration to highlight the self-consistency effects
on the effective mass. Below a carrier density of around 5 × 1018 cm−3, the effects are not
very significant. Quantitatively, the narrower the well, the more significant self-consistency is
because narrower wells result in higher energy states. These higher energy states are closer to
the barrier energies where the heterostructure potential is modified the most by electrostatics.
Self-consistency has the largest effect near a sign transition of the effective mass (see for
example figure 4) because this is near zero band-curvature. Small changes in potential and
hence curvature will correspond to large changes in effective mass in those regions.

4. Conclusions

Hole effective masses were calculated numerically for a range of material compositions and
quantum-well widths. Results showed that by adjusting the composition and/or well width,
effective masses can be effectively modified. By controlling their values, one can design
specific structures for specific device requirements.

Additionally, the effects of electrostatic self-consistency on the effective mass were
analysed. In general, self-consistency does not change the effective mass significantly. It
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Figure 5. Band dispersions using the 10×10 calculations and a parabolic model with the calculated
effective masses. The results are for the non-self-consistent calculation of the 5 nm well width at
3% nitrogen composition.

was found to be the largest around nitrogen composition regions where the effective mass
changed signs.
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